

Alpha clusters in Carbon-12 from ab initio theory & statistical learning

 Objectives Ab initio nuclear theory aims for parameter-free predictions of critical nuclear properties with controlled uncertainties using supercomputer simulations Specfic goal is to determine extent of alpha clustering in the Ground state and the Hoyle state of Carbon-12 (¹²C) 	 Impact Ground state found to have 6% alpha clustering while Hoyle state discovered to be 3-alphas 61% of the time With this high percentage of 3-alphas, the Hoyle state is confirmed as a natural gateway state for the cosmic formation of ¹²C, the key element for organic life
Ground state and the Hoyle state of Carbon-12 (¹² C)	• Statistical learning confirms 3-alpha feature of Hoyle state

Ab initio Monte-Carlo Shell Model results for density contours of 12C Ground state and first excited 0⁺ (Hoyle) state using the Daejeon16 two-nucleon potential. Simulations were performed on Fugaku in Japan, the world's largest supercomputer at the time.

Accomplishments

T. Otsuka, T. Abe, T. Yoshida, Y. Tsunoda, N. Shimizu, N. Itagaki, Y. Utsuno, J. Vary, P. Maris and H. Ueno, "Alpha-Clustering in Atomic Nuclei from First Principles with Statistical Learning and the Hoyle State Character," Nature Communications 13:2234 (2022)