We use nuclear time-dependent density functional theory (TDDFT) to provide quantitative description of heavy ion reactions involving carbon, oxygen, and calcium nuclei.

We utilize the TDDFT solver, which solves the time-dependent Hartree-Fock equations in coordinate space using fast Fourier transforms.

The time-dependent nucleon localization is a very good indicator of cluster structures in complex states formed in heavy-ion fusion reactions.

Our results supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission.

Nucleon localization for the central collision of 16O+16O at $E_{cm}=20$ MeV. The numbers indicate the collision time (in fm/c). At later times, the fused system exhibits a collective oscillation of two 12C rings against two α clusters.

Objectives

- Computer studies of colliding oxygen nuclei

Impact

- The time-dependent nucleon localization is a very good indicator of cluster structures in complex states formed in heavy-ion fusion reactions.
- Our results supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission.

Accomplishments

- Highlighted as Editors’ suggestion.
- Featured in Physics (phys.aps.org) as Physics Focus: Video-Nuclear Fusion in Hi-Def.
- Highlighted by GSI.