Connecting Neutron Skins to Gravitational Waves

Objectives

- Use a set of realistic equation-of-state (EOS) models to confront their predictions against tidal deformabilities extracted from the gravitational-wave (GW) data of binary neutron star merger GW170817.
- Given the sensitivity of GW data to the EOS, find constraints on the neutron star radius.
- Explore density dependence of the nuclear symmetry energy and analyze the impact of this measurement on the neutron skin thickness of 208Pb.

Impact

- Based on the GW data we deduced an upper limit on the neutron star radius of a 1.4 solar-mass neutron star: $R \lesssim 13.76$ km.
- We inferred a corresponding upper limit on the neutron skin thickness of 208Pb: $R_{\text{skin}} \lesssim 0.25$ fm.
- Relying on experimental lower bound of $R_{\text{skin}}(^{208}$Pb) as measured by the PREX Collaboration, we were able to provide the lower limit on the tidal deformability $\gtrsim 490$.
- If the upcoming experiment measures a thicker skin, this may be evidence of a softening of the symmetry energy at high densities, or indicative of a phase transition in the interior of neutron stars.

Accomplishments

- Highlighted as Editors’ Suggestion.
- Featured in Physics (phys.aps.org) as Synopsis: Gravitational Waves Shed Light on Dense Nuclear Matter.
- Featured by Inside Science, Physics World, Sky & Telescope, and several international news outlets.