Electromagnetic and neutral-weak response of 4He and 12C

Objectives

- Compute the electromagnetic response functions of 4He and 12C for which accurate experimental data are available.
- Within the same formalism, study the neutral-current and charged-current response functions, fundamental ingredients for describing neutrino-12C scattering.
- Investigate the energy dependence of the two-body meson-exchange currents contributions.

Impact

- The calculations of the Euclidean electromagnetic response function of 12C can be used to predict the results of the latest electron-12C scattering experiment of JLab.
- Accurate calculations of electroweak response functions are relevant to neutrino-nucleus scattering experiment (MiniBoone) and to understand the mechanism of supernovae explosions.

Accomplishments

- Development of an algorithm to compute the Euclidean response functions within Green’s function Monte Carlo.
- Using Maximum Entropy techniques it is now possible to obtain the electromagnetic response of 4He from the Euclidean response.
- Two-body currents and nuclear correlations have to be accounted for in order to get good agreement with experimental data.

References: arXiv:1501.01981

Contact: A. Lovato, lovato@anl.gov

Euclidean neutral-weak transverse response functions of 12C at $q = 570$ MeV. Two-body currents increase the one-body response in both the quasielastic and threshold regions.

Electromagnetic transverse response functions of 4He at $q = 600$ MeV obtained from the corresponding Euclidean response by using Maximum Entropy techniques.