Nucleon momentum distributions for local chiral interactions

Objectives

- We use quantum Monte Carlo methods to calculate single- and two-nucleon momentum distributions in 4He, 12C, and 16O.
- We use correlated many-body wave functions optimized for local chiral interactions up to next-to-next-to-leading order (N2LO).

Impact

- A collection of momentum distributions for p-shell nuclei has been produced for local chiral interactions at N2LO. This largely extends the momentum distribution database, previously available for phenomenological potentials only, and it provides the possibility of examining the scheme and scale dependence of various properties of interest.
- The description of the momentum distributions at low and moderate momenta is similar to that provided by phenomenological potentials, while higher momentum components are typically reduced, consistent with the lower-energy regime of chiral interactions.
- The results for back-to-back pairs confirm the large pn to pp pairs ratio in the regime $q \approx 1.5 - 2.5$ fm$^{-1}$ up to 16O, which appears to be nearly independent of the employed interaction scheme.
- The pp to pn ratio for local chiral interactions at N2LO is compatible with available experimental data extracted from electron scattering experiments in the range $q \approx 2.5 - 4.0$ fm$^{-1}$ up to $A = 16$.

Accomplishments