Ab initio short-range-correlation scaling factors in nuclei up to A=40

Objectives
- We use quantum Monte Carlo methods to calculate the short-range-correlation scaling factor a_2 in nuclei up to 40Ca as ratio of two-nucleon coordinate-space densities in the limit of short interparticle distance.
- We employ both phenomenological potentials and local chiral interactions up to next-to-next-to-leading (N^2LO) order for different values of the cutoff R_0.

Impact
- The short-range-correlation (SRC) scaling factor for a nucleus A relative to the deuteron $a_2(A/d)$ and relative to 3He $a_2(A/^3$He) is calculated from ab initio low-energy nuclear theory in light and medium-mass nuclei, with the first predictions for 6He, 6Li, 16O, and 40Ca.
- Results are largely scheme and scale independent, i.e., they do not depend on the specific nuclear potential, even though the two-nucleon densities from which a_2 is extracted are manifestly scheme and scale dependent.
- The quantum Monte Carlo estimates of a_2 agree with the available experimental information in the mass range investigated, even for a simplified phenomenological interaction that does not include the tensor force.
- The employed framework further predicts that the EMC effect and SRC scaling factors have minimal or negligible nuclear isovector corrections.
- Using the the empirical linear relationship between the slope of the EMC effect and SRC scaling factors, the slope of the EMC effect is estimated for 6He, 6Li, 16O, and 40Ca.

Accomplishments