Electromagnetic response of 12C: a first-principles calculation

Objectives

- Compute the electromagnetic longitudinal and transverse response functions of 12C for which accurate experimental data are available.
- Investigate the energy dependence of the two-body meson-exchange currents contributions.
- Assess the in-medium modification of the proton electric form factor.

Impact

- The calculations of the response function of 12C can be used to predict the results of the latest electron-12C scattering experiment of JLab.
- Accurate calculations of electroweak response functions are crucial to neutrino-nucleus scattering experiments.
- Confirming or ruling out the quenching of the proton electric form factor also impacts the EMC effect and polarization transfer reactions.

Accomplishments

- Using DMEM and ADLB libraries we capitalized on the 50 million core hours granted by an INCITE award to reliably invert the Euclidean electromagnetic responses of 12C.
- Two-body currents significantly enhance the transverse response.
- No quenching of the proton electric form factor is needed to reproduce the Coulomb sum rule when all the transitions to low-lying states of 12C are accounted for.

References: arXiv:1605.00248 (PRL in press)
Contact: A. Lovato, lovato@anl.gov

Electromagnetic transverse response functions of 12C for $q = 570$ MeV. Two-body currents increase the one-body response in both the quasielastic and threshold regions, bringing theory in good agreement with experiment.

Coulomb sum rule in 12C. Good agreement with experiments (with no quenching of the proton electric form factor) if the transitions to, to the 2+, 0+2 (Hoyle), and 4+ states are accounted for.