## From hypernuclei to hypermatter: the role of three-body forces

## **Objectives**

- Study the ground state properties of Λ-hypernuclei over a wide mass range (3  $\leq$  A  $\leq$  91).
- Investigate the effect of the presence of hyperons in the inner core of neutron stars.
- Calculate the equation of state of pure neutron matter in presence of  $\Lambda$  hyperons by using realistic nucleonnucleon and hyperon-nucleon forces.

## *Impact*

- Extension of ab-initio calculations to the strange nuclear sector.
- Provide the directions for future theoretical investigation and for the next generation of terrestrial hypernuclear experiments.
- New hints for the solution of the so-called hyperon puzzle: connection between the theory of baryonbaryon interaction and astrophysical observations.



Hyperon separation energy. The inclusion of threebody hyperon-nucleon forces provides a good description of the ground state physics of Ahypernuclei over a wide mass range.

Science



Mass radius relation. Different models of threebody hyperon-nucleon force predict dramatically different results on the maximum mass of neutron stars.

## **Accomplishments**

- Development of quantum Monte Carlo methods to explore nuclear systems with hyperons.
- Improvement of existing realistic hyperon-nucleon Hamiltonians.
- Point out the need of additional hypernuclear experimental input and further theoretical studies.



