

QMC calculations of electron-nucleus scattering NU(in the Short-Time Approximation (STA)

Objectives

- Many-body Quantum Monte Carlo calculations of nuclear response densities and functions for lepton-nucleus scattering in the quasi-elastic regime
- STA's factorization scheme will allow calculations of electroweak scattering from A≥12 without losing twobody physics
- We calculated nuclear responses densities, response functions and cross-sections for ¹²C

Cross-section for electron scattering off ¹²C, at electron beam energy E=0.56 GeV and scattering angle θ =60°, calculated within the STA

Impact (as of now)

- The STA formalism was introduced for calculations of electromagnetic nuclear responses for ⁴He, and benchmarked against other methods based on the same nuclear description (Green Function Moneta Carlo and Spectral Functions) for A=3 systems
- It correctly reproduces nuclear responses and crosssections up to moderate values of q. Current calculations are limited by relativistic effects, their inclusion is necessary both in the electromagnetic currents and kinematics

Accomplishments (as of now)

- L. Andreoli, J. Carlson, A. Lovato, S. Pastore, N. Rocco, and R. B. Wiringa, Phys. Rev. C 105, 014002 (2022), editor suggestion
- Short-Distance nuclear structure and PDFs, ECT*, Trento, invited talk (July 2023)
- New physics searches at the precision frontier, PROGRAM INT-23-1B, INT, Seattle, invited talk (May 2023)
- 4th Inter- national Workshop on Quantitative Challenges in Short-Range Correlations and the EMC Effect Research, CEA, Paris-Saclay, invited talk (February 2023)