Electromagnetic Form Factor and Sum Rules in 12C

Objectives

- Compute electroweak response in 12-Carbon. This is a fundamental ingredient in describing the neutrino - ¹²C scattering.
- As a first step compute the sum rules for the electromagnetic response of ¹²C including two-body meson exchange currents.

Science

Impact

- This calculation can be used to predict the results of a recent experiment at Jlab, which are not yet released!
- It sets the stage for neutrino scattering calculations relevant to neutrino-nucleus scattering detector calibration (MiniBooNE) and supernovae explosions.

Longitudinal form factor: Two body terms in the density operator bring theoretical prediction closer to experimental data in the highmomentum transfer tail (q).

Transverse sum rule:

- Two-body contribution is large for all momentum transfers.
- Satisfactory agreement with the experimental values.

Accomplishments

We ported GFMC, our Green's Function Monte Carlo code, together with the ADLB load-balancing library, to the 10-petaflop Mira computer at Argonne and demonstrated scaling to more than 250,000 MPI ranks with over 2 million threads.

We conducted experiments to determine the best configuration of MPI processes per node and OpenMP threads per process for the sum rule calculations (4 ranks/node, 16 threads/rank).

We computed the longitudinal form factor and the sum rules for the electromagnetic response of ¹²C including two-body meson exchange currents. This is the first step towards our overall objective.

The two-body currents are important for agreement with existing data; the Jlab results soon to be available should provide a more stringent test.

Reference: http://arxiv.org/abs/1305.6959

A. Lovato, lovato@anl.gov Contact: