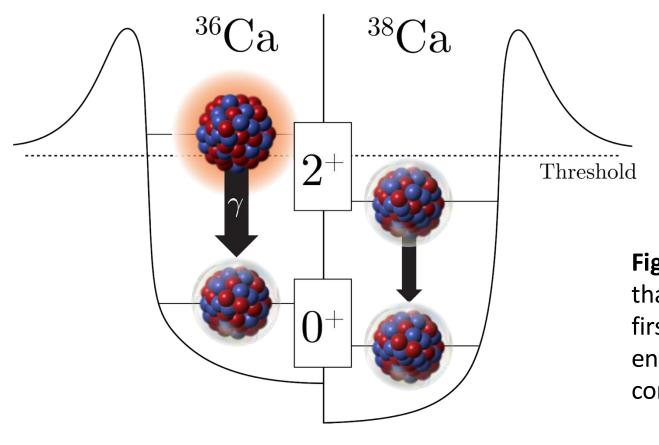
Loose binding of ³⁶Ca has been shown to solve a

recent nuclear puzzle

Objectives


U.S. DEPARTMENT OF

A striking anomaly is observed in ³⁶Ca and ³⁸Ca near the proton dripline: despite its higher 2⁺ excitation energy and smaller charge radius, ³⁶Ca exhibits a larger B(E2; 0⁺ →2⁺) transition strength than ³⁸Ca.

Office of

Science

 This observation suggests a complex interplay between structural evolution and continuum effects associated with proton excitations to unbound states across the Z = 20 magic gap.

Impact

- The puzzle was investigated using the Gamow shell model, a configuration-mixing approach that explicitly incorporates excitations to unbound states.
- We employed the chiral EFT Hamiltonian with twonucleon and three-nucleon forces. The low-energy constants of the interaction were fine-tuned to reproduce experimental separation energies.
- The calculations reveal that the unbound 2⁺ state of ³⁶Ca, a proton resonance, exhibits a spatially diffuse structure. This enhances the B(E2) transition strength, which explains the observed anomaly. In particular,
- Our analysis reveals that the proton sd>fp excitations strongly influence the B(E2) transition.

Accomplishments

• Published in Phys. Rev. C 112 L011302 (2025)

Figure caption: The exotic nuclei ^{36,38}Ca have fewer neutrons than protons, making the protons only weakly bound. The first excited state of ³⁶Ca lies above the proton separation energy. This appears to make it easier to excite than the corresponding state in ³⁸Ca