

Computing nuclear response functions with time-dependent coupled-cluster theory

Objectives

- Develop a time-dependent framework to address nuclear dynamical processes from first principles, using coupled-cluster theory.
- Test it as a first step on the response of the nucleus to an external electric dipole perturbation.

Proton and neutron density fluctuations induced by an electric dipole perturbation (snapshot at t = 500 fm/c). Protons and neutrons oscillate in counterphase, in agreement with the traditional interpretation of giant dipole resonances.

Impact (as of now)

- We validated the method by comparing dipole response properties of ⁴He and ¹⁶O with results from an established static approach, finding good agreement.
- We see the traditional picture of giant and pygmy dipole resonances as collective oscillations of protons against neutrons emerging from the time evolution of density fluctuations in ¹⁶O and ²⁴O.
- We observe that the behavior of the nucleus in the strong electric field limit becomes chaotic.

Accomplishments (as of now)

F. Bonaiti, C. Balos, K. Godbey, G. Hagen, T. Papenbrock, C. S. Woodward. <u>arXiv:2510.19940</u>
[nucl-th].

Contact: Francesca Bonaiti, bonaiti@frib.msu.edu