Accurate bulk properties of nuclei and nuclear matter from potentials with Δ isobars

Objectives
- Construct nuclear interactions that accurately describe atomic nuclei and nuclear matter
- Enable accurate computations of nuclear density distributions, polarizabilities, charge radii, and neutron skins
- Consistent description of nuclear matter and finite nuclei on a single footing
- Inclusion of Δ isobars (lowest-mass excitations of the nucleon) improves the saturation point of nuclear matter

Impact
- Enable accurate computations of nuclear density distributions, polarizabilities, charge radii, and neutron skins
- Consistent description of nuclear matter and finite nuclei on a single footing
- Inclusion of Δ isobars (lowest-mass excitations of the nucleon) improves the saturation point of nuclear matter

Accomplishments
- New potentials employed in several high-impact publications on nuclear charge radii

Charge radii (top) and ground-state energies (bottom) of calcium isotopes with A nucleons computed with new potentials ΔNNLO$_{GO}$.