

Structure of the doubly magic nucleus ²⁶⁶Pb

Objectives

- Predict the structure of the superheavy, extremely neutron-rich nucleus ²⁶⁶Pb (82 protons, 184 neutrons), which is supposed to be a doubly-magic nucleus, i.e. more strongly bound and compact than other nuclei with similar numbers of protons and neutrons.
- Advance ab initio computations to superheavy nuclei.
- Test predictive power of nuclear interactions tuned to properties of light nuclei in this superheavy region.

Excitation energies of 266 Pb (on the right) compared to other known doubly-magic nuclei. Red points are theoretical results, and black points are data for states with spin/parity $J^{\pi}=2^{+},3^{-}$.

Impact (as of now)

- Accurate reproduction of essential features of the wellknown doubly-magic nucleus ²⁰⁸Pb demonstrates quality of nuclear interactions.
- ²⁶⁶Pb is predicted to be doubly magic with a significant energy gap between the ground state and excited states.
- Just adding a single neutron to ²⁶⁶Pb yields a nucleus that is not bound and will decay via neutron emission.
- Extended reach of ab initio computations to superheavy nuclei.

Accomplishments (as of now)

F. Bonaiti, G. Hagen, T. Papenbrock, arXiv:2508.14217;
DOI: <u>10.48550/arXiv.2508.14217</u>

Contact: Francesca Bonaiti, bonaiti@frib.msu.edu