

Bridging reaction theory and nuclear structure in π^{\pm} -48Ca scattering

Objectives

- Develop a more accurate model of pion-nucleus scattering by incorporating second-order contributions in the scattering potential, focusing on the case of ⁴⁸Ca.
- Employ modern nuclear structure input (one-body densities and two-body correlation functions), based on chiral effective field theory interactions, in the scattering potential.

Predicted differential cross section for π^+ (red) and π^- (blue) scattering on ⁴⁸Ca as a function of the scattering angle, compared to experimental data (black) for a pion laboratory kinetic energy of 180 MeV.

Impact (as of now)

- Our theoretical framework successfully reproduces experimental differential cross sections for π^{\pm} -48Ca scattering.
- Second-order contributions to the scattering potential are key to achieve agreement with experimental data.
- The results exhibit only mild sensitivity to the choice of the *ab initio* chiral nuclear interaction, which might become a more significant source of uncertainty in the low-energy regime.

Accomplishments (as of now)

Pre-print: V. Tsaran, F. Marino, S. Bacca, F. Bonaiti, M. Vanderhaeghen, <u>arXiv:2505.18459</u>
[nucl-th].